Compact Guide Cylinder AGPM Series Φ12~Φ80

Advantages

Small axial size and more compact structure.

Strong load capacity and torque force.

Two ways to connect the pipes.

Good guidance.

Imported bearings free of copper.

Can be mounted on both sides and bottom.

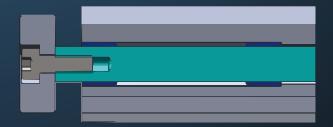
Easy to install and disassemble

The cylinder block and end plate are designed with dowel hole.

Electroless nickle is used on the end plate to ensure its corrosion and rust resistance.

Magnetic switch can be installed on both sides

Pipes can be connected on both sides.


mported bearings free of copper.Non-lube during the movement.

maxair The diagram of internal structure between Maxair&S

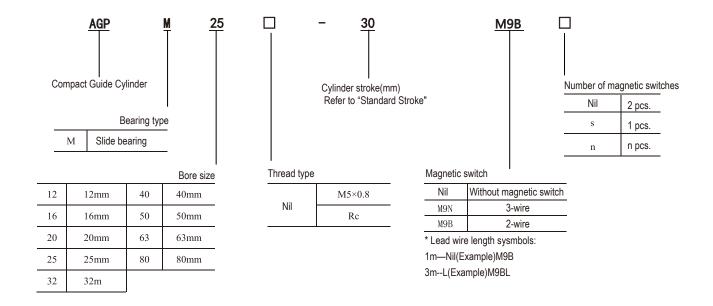
Lengthened bearing which could extend service life and ensure guiding performance of the cylinder.

S from Japan

Shorter bearing which reduces the resistance between guide rod and bearing but increases the wear, so the service life is shorter.

Compact Guide Cylinder AGPM Series Φ12~Φ80

Specification


Bore size(mm)	12	16	20	25	32	40	50	63	80
Action					Double	eacting			
Fluid					Α	ir			
<u>Pro</u> ofpressure				1.5M	Pa				
Max.operating pressure				1.0M	Pa				
Min. operating pressure		0.12MI	Pa		0.1M	Pa			
Ambient and fluid temperature			-10°C	C~60°C	(Not Fr	eezing)		
Speed of piston			50~500r	nm/s				50~400r	nm/s
Cushioning				Rubber	bumpe	r on bo	th ends	;	
Lubrication					Non-	-lube			
Stroke length				+1.5					
tolerance					nm				

note) No load

Theoretical Output

(N)

Bore size	Rod size	Act	ion	Piston area			Operating	g pressure	(MPa)	(1.1)
(mm)	(mm)	ACI	ION	(mm²)	0. 1	0. 2	0.3	0. 4	0.5	0.6
1.0	C	Double	OUT	113. 0	11. 3	22. 6	33. 9	45. 2	56. 5	67.8
12	6	acting	IN	84. 8	8. 5	17. 0	25. 4	33. 9	42. 4	50. 9
1.0	0	Double	OUT	201. 0	20. 1	40. 2	60. 3	80. 4	100. 5	120.6
16	8	acting	IN	150. 7	15. 1	30. 1	45. 2	60. 3	75. 4	90. 4
20	10	Double	OUT	314. 0	31. 4	62. 8	94. 2	125. 6	157. 0	188. 4
20	10	acting	IN	235. 5	23. 6	47. 1	70. 7	94. 2	117.8	141. 3
25	10	Double	OUT	490. 6	49. 1	98. 1	147. 2	196. 3	245. 3	294. 4
25	12	acting	IN	377. 6	37. 8	75. 5	113. 3	151. 0	188. 8	226. 6
32	16	Double	OUT	803. 8	80. 4	160. 8	241. 2	321.5	401.9	482. 3
32	10	acting	IN	602. 9	60. 3	120. 6	180. 9	241. 2	301. 4	361. 7
40	16	Double	OUT	1256. 0	125. 6	251. 2	376. 8	502. 4	628. 0	753. 6
40	10	acting	IN	1055. 0	105. 5	211.0	316. 5	422.0	527. 5	633. 0
50	20	Double	OUT	1962. 5	196. 3	392. 5	588. 8	785. 0	981.3	1177. 5
50	20	acting	IN	1648. 5	164. 9	329. 7	494. 6	659. 4	824. 3	989. 1
63	20	Double	OUT	3115. 7	311.6	623. 1	934. 7	1246. 3	1557.8	1869. 4
03	20	acting	IN	2801.7	280. 2	560. 3	840. 5	1120. 7	1400.8	1681. 0
80	25	Double	OUT	5024.0	502. 4	1004. 8	1507. 2	2009. 6	2512.0	3014. 4
00	40	acting	IN	4533. 4	453. 3	906. 7	1360. 0	1813. 4	2266. 7	2720. 0

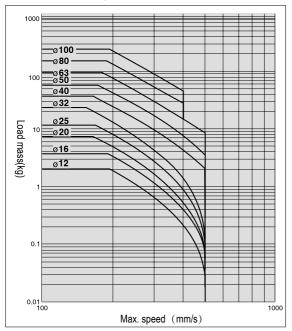
Standard Stroke

Bore size(mm)	Standard Stroke(mm)	Magnetic Switch
12, 16	10,20,30,40,50,75,100,125,150,175,200,250	
20, 25	20,30,40,50,75,100,125,150,175,200,250,300,350,400	SW- M9B(L) SW- M9N(L)
32~80	25,50,75,100,125,150,175,200,250,300,350,400	,

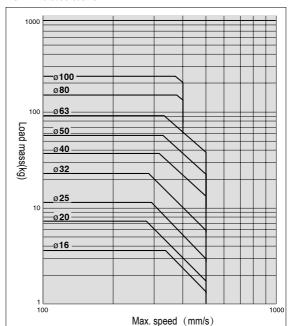
Intermediate stroke(mm)

Method	As for the intermediate strokes other than the standard strokes at left are manufactured by means of installing a spacer. Ф12 toФ32Stroke available in 1 stroke increments Ф40 to Ф80Stroke available in 5 stroke increments
Example	For AGPM20-39,AGPM20-40 is provided with a 10mm width spacer.

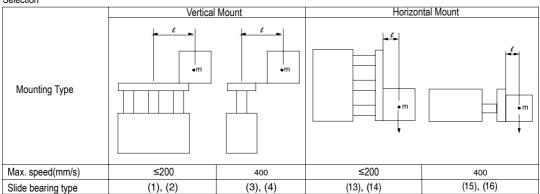
IFor example


 $1. Bore\ size: 25mm;\ Stroke:\ 50mm; Slide\ bearing; Magnetic\ switch\quad Model:$

AGPM25-50-M9B


2.Bore size:16mm;Stroke:100mm;Slide bearingModel: AGPM16-100

3.For magnetic switch SW-M9B 1m lead wire SW-M9BL 3m lead wire Load mass and cylinder speed should be observed within the range given in the graph below.


AGPM with a rubber bumper

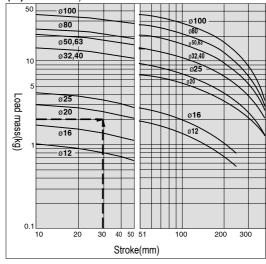
AGPM without a cushion

Selection

Horizontal mounting

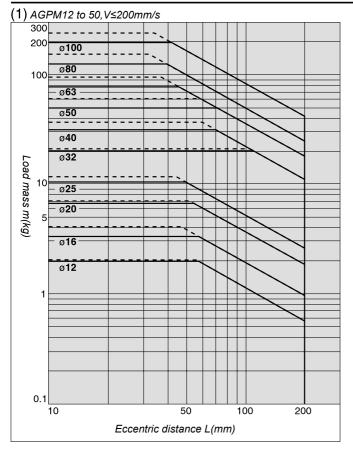
Conditions:

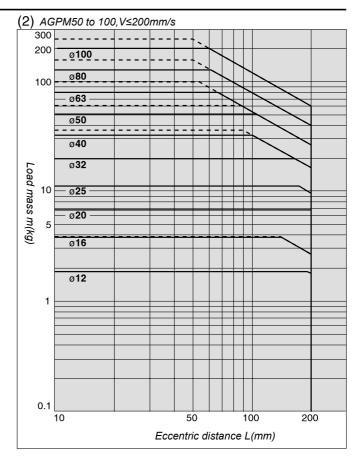
Horizontal mounting. Sliding ball bearing.

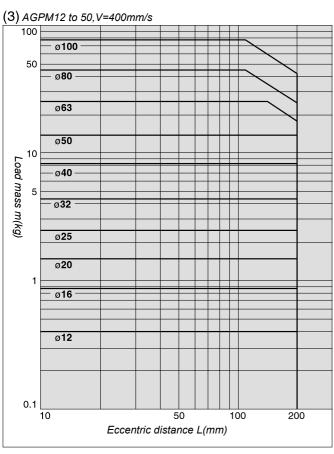

 $50 \mathrm{mm}$ between plate and center of gravity load.Max. speed is $200 \mathrm{mm/s}$. Load mass is $2 \mathrm{kg}$. Stroke is $30 \mathrm{mm}$.

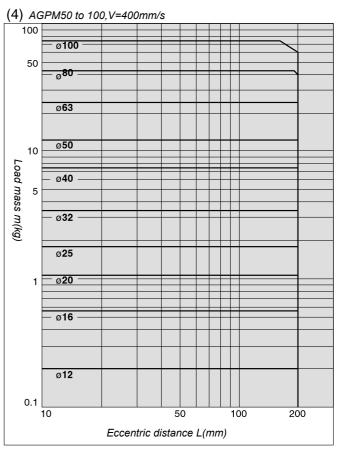
Choosing AGPM20-30

When max. speed is more than 200mm, load mass is related to the coefficient as below.

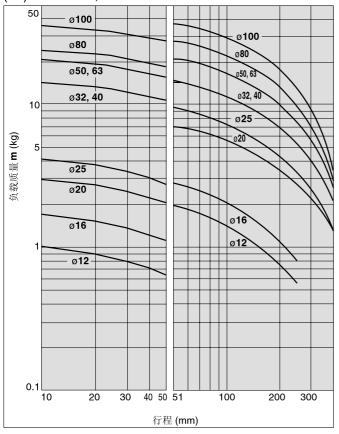

Max. Speed	> 300 mm/s	>400 mm/s	> 500 mm/s
Coefficient	1.7	1	0.6

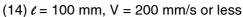

(13) ℓ = 50 mm, V = 200 mm/s or less

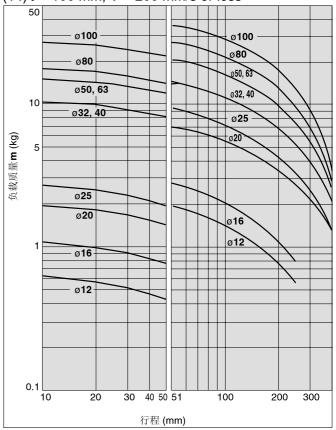


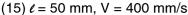

---- working pressure 0.4 MPa ---- working pressure 0.5 MPa above

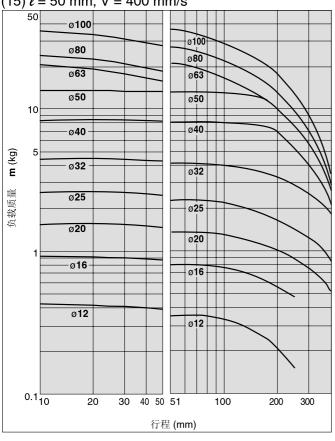
AGPM12 to 100

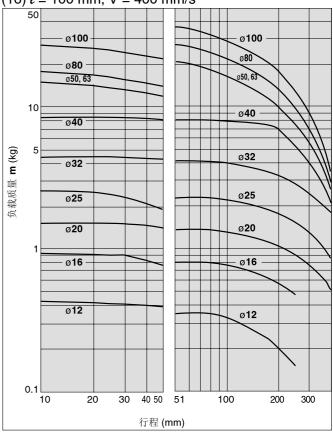


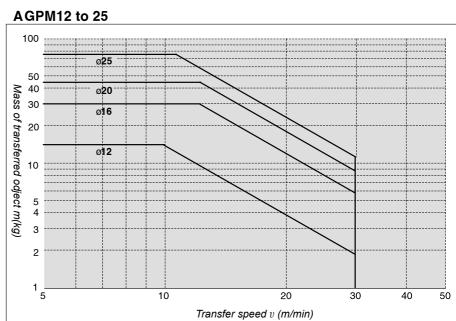


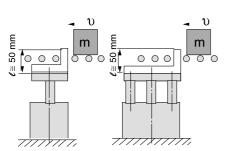


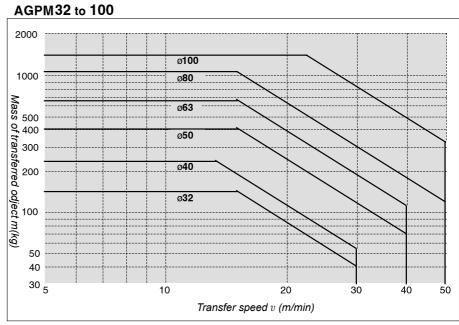


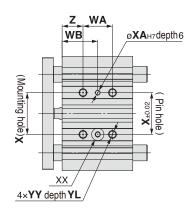

(13) ℓ = 50 mm, V = 200 mm/s or less

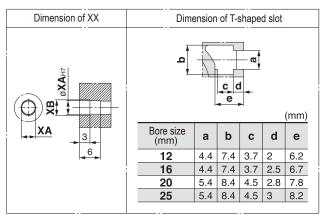


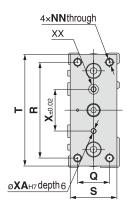


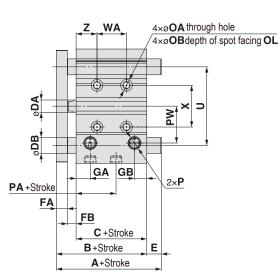


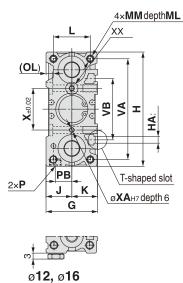

AGPM12 to 25


AGPM32 to 100






Outline Drawing(mm)

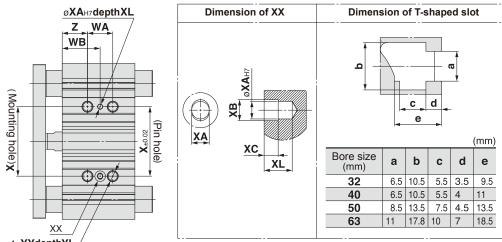

Φ12~Φ25/FAGPM

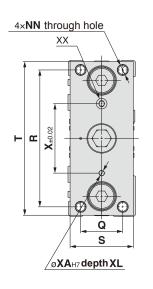
※ Bore size 12 and 16 are only for the M5×0.8 port.

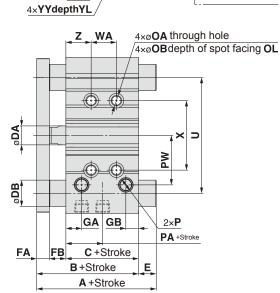
AGPM Common Dimensions

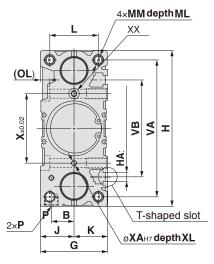
(mm)

Bore size (mm)	Standard stroke (mm)	В	С	DA	FA	FB	G	GA	GB	Н	НА	J	К	L	ММ	ML	NN	OA	ОВ	OL	Р
12	10,20,30,40,50,75,100	42	29	6	7	6	26	10	7	58	M4	13	13	18	M4×0.7	10	M4×0.7	4.3	8	4.5	M5×0.8
16	125,150,175,200,250	46	33	8	7	6	30	10.5	7.5	64	M4	15	15	22	M5×0.8	12	M5×0.8	4.3	8	4.5	M5×0.8
20	20,30,40,50,75,100,125,150	53	37	10	8	8	36	11.5	9	83	M5	18	18	24	M5×0.8	13	M5×0.8	5.4	9.5	5.5	Rc1/8
25	175,200,250,300,350,400	53.5	37.5	12	9	7	42	11.5	10	93	M5	21	21	30	M6×1.0	15	M6×1.0	5.4	9.5	5.5	Rc1/8


Bore size			D14/		_		_	١					WA					WB					\v_D	vv		_
(mm)	PA	РВ	PW	Q	R	S	'	U	VA	VB	≤30st	30st≤WA ≤100st	100st≤WA ≤200st	200st≤WA ≤300st	≤300st	≤30st	30st≤WB ≤100st	100st≤WB ≤200st	200st≤WB ≤300st	≤300st	Х	XA	ХВ	YY	YL	
12	13	8	18	14	48	22	56	41	50	37	20	40	110	200	_	15	25	60	105	_	23	3	3.5	M5×0.8	10	5
16	14.5	10	19	16	54	25	62	46	56	38	24	44	110	200	_	17	27	60	105	_	24	3	3.5	M5×0.8	10	5
20	13.5	10.5	25	18	70	30	81	54	72	44	24	44	120	200	300	29	39	77	117	167	28	3	3.5	M6×1.0	12	17
25	12.5	13.5	30	26	78	38	91	64	82	50	24	44	120	200	300	29	39	77	117	167	34	4	4.5	M6×1.0	12	17


AGPM (Slide bearing) /A, DB, E Dimensions


(mm)


Bore size			4				Е		
(mm)	≤50st	50st≤A ≤100st	100st≤A ≤200st	≤200st	DB	≤50st	50st≤E ≤100st	100st≤E ≤200st	≤200st
12	42	60.5	82.5	82.5	8	0	18.5	40.5	40.5
16	46	64.5	92.5	92.5	10	0	18.5	46.5	46.5
20	53	77.5	77.5	110	12	0	24.5	24.5	57
25	53.5	77.5	77.5	109.5	16	0	24	24	56

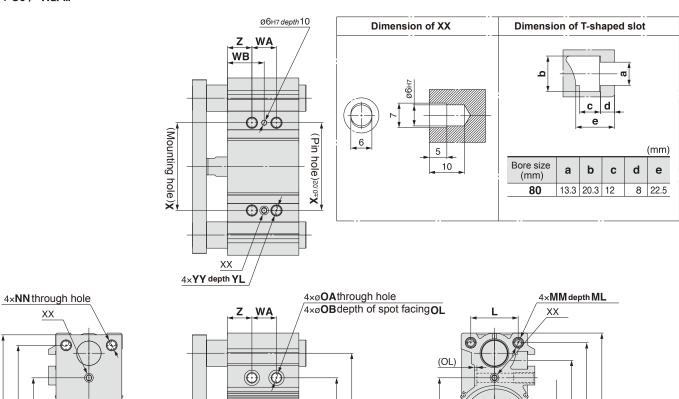
Φ32~Φ63/AGPM

AGPM 尺寸表

(mm)

Bore size (mm)	Standard stroke (mm)	В	С	DA	FA	FB	G	GA	GB	Н	НА	J	K	L	ММ	ML	NN	OA	ОВ	OL	Р
32	25,50,75	59.5	37.5	16	10	12	48	12	9	112	M6	24	24	34	M8×1.25	20	M8×1.25	6.7	11	7.5	Rc1/8
40	100,125,150	66	44	16	10	12	54	15	12	120	M6	27	27	40	M8×1.25	20	M8×1.25	6.7	11	7.5	Rc1/8
50	175,200,250	72	44	20	12	16	64	15	12	148	M8	32	32	46	M10×1.5	22	M10×1.5	8.6	14	9	Rc1/4
63	300,350,400	77	49	20	12	16	78	15.5	13.5	162	M10	39	39	58	M10×1.5	22	M10×1.5	8.6	_	9	Rc1/4

Bore size			D)4/			6	_						WA					WB					V-D					_
(mm)	PA	PB	PW	Q	R	S	ı	U	VA		≤25st		100st≤WA ≤200st	200st≤WA ≤300st	≤300st	≤25st	25st≤WB ≤100st	100st≤WB ≤200st	200st≤WB ≤300st	≤300st	Х	XA	ХВ	хс	XL	YY	YL	
32	6.5	16	35.5	30	96	44	110	78	98	63	24	48	124		300		45	83	121	171	42	4	4.5	3	6	M8×1.25	16	21
40	13	18	39.5	30	104	44	118	86	106	72	24	48	124	200	300	34	46	84	122	172	50	4	4.5	3	6	M8×1.25	16	22
50	9	21.5	47	40	130	60	146	110	130	92	24	48	124	200	300	36	48	86	124	174	66	5	6	4	8	M10×1.5	20	24
63	13	28	58	50	130	70	158	124	142	110	28	52	128	200	300	38	50	88	124	174	80	5	6	4	8	M10×1.5	20	24


\mathbf{AGPM} (Slide bearing) /A, DB, E Dimensions

(mm)

Bore size		Α				E	
(mm)	≤50st	50st≤A ≤200st	≤200st	DB	≤50st	50st≤E ≤200st	≤200st
32	75	93.5	129.5	20	15.5	34	70
40	75	93.5	129.5	20	9	27.5	63.5
50	88.5	109.5	150.5	25	16.5	37.5	78.5
63	88.5	109.5	150.5	25	11.5	32.5	73.5

 α

Ø6H7depth 10

X±0.02

2×**P**

JĘ

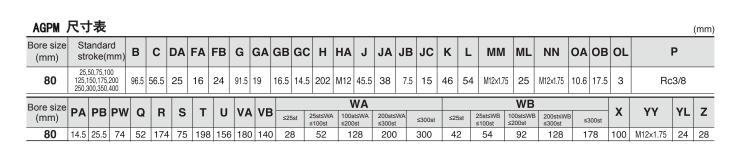
PB

JC

G

K

JA


J

VB VA

I

T-shaped slot

ø6н7 depth10

2×**P**

Ε

PA +Stroke

	AGPM (Slide beari	ng) /A,[)B, E Dime	ensio	ns		(mm)
Ī	缸径		Α				Е	
	(mm)	≤50st	50st≤A ≤200st	≤200st	DB	≤50st	50st≤E ≤200st	≤200st
Ī	80	104.5	131.5	180.5	30	8	35	84

%DA

ODB.

FĄ

 \bigcirc

GB

C+Stroke

B+Stroke

A +Stroke

GC

FΒ

GA